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The su3_bench benchmark

• su3_bench was developed to provide a means to explore different 

programming methodologies using a simple, but nontrivial, mathematical 

kernel

• Derived from the MILC Lattice QCD (LQCD) code

• Matrix-matrix and matrix-vector SU(3) (special unitary group of degree 3) operations 

are a fundamental building block of LQCD applications

• Most LQCD applications use domain specific implementations (libraries) written in 

machine specific languages and/or intrinsics …

• Hence performance portable methodologies are of interest

• Kernel calculates an SU(3) matrix-matrix multiply of complex numbers

• Benchmark operates over a lattice of dimension = L^4

• https://gitlab.com/NERSC/nersc-proxies/su3_bench

• Released as open-source software under LBNL’s modified BSD license

2

https://gitlab.com/NERSC/nersc-proxies/su3_bench


su3_bench data structures
• SU(3) matrix definition (72 bytes single, 144 bytes double)

typedef struct { std::complex<float> e[3][3]; } fsu3_matrix;
typedef struct { std::complex<double> e[3][3]; } dsu3_matrix;
#if (PRECISION==1)     
#define su3_matrix    fsu3_matrix

#else
#define su3_matrix    dsu3_matrix

#endif

• Site definition
• Based on MILC’s lattice.h, but reduced to bare minimum of fields
typedef struct { 
su3_matrix link[4];  // the fundamental gauge field
int x,y,z,t;         // coordinates of this site
int index;           // my index in the array
char parity;         // is it even or odd?

#if (PRECISION==1)
int pad[2];          // pad out to 64 byte alignment

#else
int pad[10];

#endif
} site __attribute__ ((aligned));
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C = A * B
su3_bench performs a 3x3 
complex matrix-matrix 
multiply for each gauge field 
in the 4 lattice dimensions



The kernel: C = A * B

for (i=0;i<total_sites;++i) // L^4 lattice sites
for (j=0;j<4;++j) // 4 links, SU(3) matrices, per site
for(k=0;k<3;k++) // 3x3 matrix elements per link

for(l=0;l<3;l++) {
cc = {0.0,0.0};
for(m=0;m<3;m++) // 3x1 dot product per matrix element
cc += A[i].link[j].e[k][m] * B[j].e[m][l];

C[i].link[j].e[k][l] = cc;
}
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Nominal GPU parallelization strategy: 
• For each site, create 4*3*3=36 threads
• Each thread does a single 3x1 vector dot product
• Reduces the number of Sites/group and alleviates cache pressure



Analytical roofline model

• A & C are lattices of size L^4 sites
• su3_matrix[4] à 288 bytes/site

• A is read once per iteration

• C is written once per iteration

• B is a single su3_matrix[4] array
• Relatively small, should stay in cache

• Total Bytes = 576 Bytes (single-precision)

• Total FLOPS = 864 FLOPS/site

• Arithmetic Intensity (FLOPs/Byte)
• AI = 864 / 576 = 1.5 single-precision

• AI = 0.75 double-precision
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Su3_bench: Cori GPU Analytical Roofline

Performance <= 1,269 GFLOPS/sec846 GB/sec (BabelStream)
14,274 GF/s (SGEMM)



Test beds used for this study
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NERSC: Cori GPU OLCF: Lyra ALCF: Iris
GPU architecture Nvidia V100 AMD MI-60 Intel Gen9 NEO

# units/device 80 SM 64 CU 72 EU

FP32 cores/simd lanes 5120 = SMs*64 4096 = CUs*64 576 = EUs*2*4

FP64 cores/simd lanes 2560 = SMs*32 same 144 = EUs*1*2

L2 cache 6144 KB 4096 KB 1536 KB

L1 cache 6400 KB/SM (shared) 16 KB/CU

TFLOP/s peak
(nominal/boost clock)

13.4/15.7 single
6.72/7.83 double

9.83/14.8 single
4.92/7.37 double

1.32 single
0.331 double

TFLOP/s sustained 14.3(1) single
7.05(1) double

11.2(1) single
5.63(1) double

1.21(3) single
0.302(3) double

Gbyte/s 897(2) peak
847(2) sustained (94%)

1024(2) peak
816(2) sustained (80%)

25.6(3)

1. Using mt-dgemm benchmark
2. Using BabelStream benchmark
3. Using Empirical Roofline Toolkit, single-precision is derived from double-precision



Cori-GPU Programming Environments

CUDA HIP OpenCL OpenMP OpenACC SYCL Intel DPCPP
CUDA 
10.2.89

rocm-
3.3.0

Version 1.2
• GCC
• OpenCL in CUDA 

driver
• POCL:

based on llvm 9 
w/SPIRV-LLVM 
translator;
CUDA 9.2.148

llvm/10.0.0
• CUDA 

10.1.243
PGI/19.20-
alpha2
Cray PE

PGI/19.10
• Cori GPU 

module
Cray PE

Codeplay
ComputeCpp 1.3.0
• With POCL 

(see OpenCL)
• Experimental PTX 

target
hipSYCL
• llvm/9.x
• CUDA 10.0.130

sycl branch
• With 

Codeplay
developed 
NVPTX 
backend

• CUDA 
10.1.243
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• Environments in bold where used for this study
• Environments in grey are available, but not explored here

• I will note that POCL outperformed Nvidia’s OpenCL driver by 22% on average



Early Results (Fall 2019)
CUDA OpenMP OpenACC OpenCL SYCL

# threads/SM 128 36 N/A 128 128
GFLOPS/sec 1112 104 810 1095 5.8

analytical roofline 1269 1269 1269 1269 1269
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• Note: Log scale!
• CUDA and OpenCL perform near 

roofline
• OpenACC is respectable
• OpenMP & SYCL have serious 

issues
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OpenMP Workaround

#pragma omp target teams distribute \
thread_limit(threads_per_team)

for(int i=0; i<total_sites; ++i) {
#pragma omp parallel for collapse(3)
for (int j=0; j<4; ++j) {

for(int k=0;k<3;k++) {
for(int l=0;l<3;l++){

Complx cc = {0.0, 0.0};
for(int m=0;m<3;m++)

cc += d_a[i].link[j].e[k][m] 
* d_b[j].e[m][l];

d_c[i].link[j].e[k][l] = cc;
}

}
}

}
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size_t num_work_items = total_sites * 
threads_per_team;
#pragma omp target teams distribute parallel for
for (int id =0; id < num_work_items; id++) {

int i = id/36;
int j = (id%36)/9;
int k = (id%9)/3;
int l = id%3;
Complx cc = {0.0, 0.0};
for(int m=0;m<3;m++)

cc += d_a[i].link[j].e[k][m] 
* d_b[j].e[m][l];

d_c[i].link[j].e[k][l] = cc;
}

Nominal Implementation: one thread/dot product Workaround: OpenCL like implementation2, w/manual collapse

= 1028 GF/s !!!= 104 GF/s

à LLVM implementation: end of parallel 
region forces a flush after each iteration, 
resulting in excessive memory traffic1

1. Thanks to Chris Daley (LBL) for help with implementation and identifying the flush “feature”
2. Thanks to Xinmin Tian (Intel) for workaround and Intel compiler optimizations



SYCL Workaround

auto d_a = a_buf.get_access<cl::sycl::access::mode::read>(cgh);
auto d_b = b_buf.get_access<cl::sycl::access::mode::read>(cgh);
auto d_c = c_buf.get_access<cl::sycl::access::mode::discard_write>(cgh);

cgh.parallel_for<class k_mat_nn>(cl::sycl::nd_range<1> {total_wi, wgsize},
[=](cl::sycl::nd_item<1> item) {

size_t myThread = item.get_global_id(0);
size_t mySite = myThread/36;
if (mySite < total_sites) {

int j = (myThread%36)/9;
int k = (myThread%9)/3;
int l = myThread%3;
Complx cc = {0.0, 0.0};
for (int m=0;m<3;m++) {

const auto aa = d_a[mySite].link[j].e[k][m];
const auto bb = d_b[j].e[m][l];
cc += aa * bb;

}
d_c[mySite].link[j].e[k][l] = cc;

}
}
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Nominal Implementation: array indexing

Workaround: Pointer indexing1

for (int m=0;m<3;m++) {
const auto aa = (d_a.get_pointer() + mySite)->link[j].e[k][m];
const auto bb = (d_b.get_pointer() + j)->e[m][l];
cc += aa * bb;

}
d_c[mySite].link[j].e[k][l] = cc;

SYCL 1.2.1 spec bug2:
For dataT operator[]  using read 
only mode:
“Returns the value of the 
element stored within the SYCL 
buffer this SYCL accessor is 
accessing at the index specified 
by index.” 

= 816 GF/s !!!
= 5.8 GF/s

1. Thanks to Thomas Applencourt (ANL) for figuring out pointer reference performs well
2. Thanks to John Pennycook (Intel) for figuring out SYCL spec issue
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Results after workarounds

• CUDA, OpenCL and OpenMP are near 
the roofline and are essentially BW 
bound

• OpenACC, and SYCL implementations are 
still seeing some form of compute bound 
behavior

CUDA OpenMP* OpenACC OpenCL SYCL* hipSYCL* DPCPP*
# threads/SM 128 144 N/A 128 144 144 144

GFLOPS/sec 1111 1028 810 1095 816 767 880
analytical roofline 1269 1269 1269 1269 1269 1269 1269

* result with workaround
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Performance vs. Threads/Workgroup
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# of threads/SM CUDA OpenMP* OpenACC OpenCL SYCL* hipSYCL* DPCPP*
36 521.9 757.1 810.0 599.4 498.6 466.7 520.3
64 1025.1 985.3 1056.7 780.6 741.4 878.1
72 1103.2 921.2 1083.7 774.1 758.2 879.3

128 1111.5 1005.5 1095.2 786.6 742.8 870.8
256 1108.0 1020.5 1092.4 806.1 756.8 872.0

• CUDA & OpenCL
• Require at least 64 threads/block
• Near roofline performance

• OpenMP, OpenACC, & SYCL 
• Still seem to be have computational 

inefficiencies
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FLOPs DRAM read DRAM write

Measured Roofline (using nvprof)
CUDA OpenMP OpenMP* OpenACC OpenCL SYCL SYCL* hipSYCL* DPCPP*

FLOPs 1.00 0.92 1.00 1.00 1.00 0.92 0.92 1.00 0.92
DRAM read 1.11 1.30 1.17 1.12 1.11 41.09 1.11 1.11 1.11

DRAM write 1.11 4.07 1.12 1.44 1.09 243.89 1.48 1.47 1.48
measured Roofline 1144 473 1108 992 1152 9 978 985 978

• Pre-workaround, OpenMP and SYCL 
implementations were moving a lot of data!
• SYCL still has high write ratio

• DRAM  read ratio of 1.11 is ideal
• Actual AI is 1.35 including other elements in 

the site structure,
1.5 / 1.35 = 1.11

• FLOP counts depend on the compiler
• C += A * B; for 3x1 vectors
• 1.00 – All ops are FMA
• 0.92 – 1st accumulation of 3x1 vector-vector 

multiply is an assignment



Performance vs. Measured Roofline
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CUDA OpenMP* OpenACC OpenCL SYCL* hipSYCL* DPCPP*
# threads/SM 128 144 128 144 144 144

GFLOPS/sec 1111 1028 810 1095 816 767 880
measured roofline 1144 1108 992 1152 978 985 978

• CUDA, OpenMP and OpenCL are near 
the roofline and are essentially BW 
bound

• OpenACC, and SYCL implementations are 
moving more data and have a lower 
roofline, in particular writes
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Results for AMD Vega 20: OLCF Lyra test bed
• HIP and OpenCL perform well, but not as good as 

CUDA on Nvidia’s Volta
• Same 4 stacks of HBM as Volta

• hipSYCL limitation?
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HIP OpenCL OpenMP hipSYCL
# threads/SM 512 128 64 512

GFLOPS/sec 908.1 912.6 703.5 356.2
roofline 1215.8 1215.8 1215.8 1215.8
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Results for Intel Gen9/NEO: ALCF Iris test bed
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OpenCL DPCPP OpenMP
# threads/SM 36 36 36

GFLOPS/sec 34.6 34.5 33.4
roofline 38.4 38.4 38.4
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Programming Model vs. Architecture
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CUDA HIP OpenCL OpenMP OpenACC SYCL DPCPP
Nvidia X X X X X X(1) X(2)

AMD X X X X(3)

Intel X X X X

1. ComputeCPP with POCL, which is experimental/unsupported; ComputeCPP also supports a NVPTX 
backend, but it’s deemed experimental and had performance issues with su3_bench

2. This study used DPCPP as a SYCL compiler, SYCL extensions are untested

3. hipSYCL only at this point in time; ComputeCpp doesn’t support GCN backend, perhaps POCL works?



Performance Portability1
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1) S. J. Pennycook, J. D. Sewall, V. W. Lee, “A Metric for Performance Portability”, Proceedings of the 7th 
International Workshop in Performance Modeling, Benchmarking and Simulation of High Performance 
Computer Systems, Nov. 2016

Programming Model
Efficiency

Cori GPU 86.2%

Lyra 66.9%

Iris 99.0%

Cross Platform
Efficiency

OpenMP 86.9%

OpenCL 99.4%

SYCL 59.9%



Getting good OpenMP performance 
can be a challenge
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• Su3_bench includes four (4) different 
OpenMP implementations
• All 4 seem to be reasonable solutions
• Drastically varied performance
• Still necessary to tune with num_teams() 

and thread_limit() directives
• We have explored Clang, Cray CCE, 

NVIDIA/PGI and Intel compilers and 
runtimes
• Using su3_bench to explore OpenMP 

compilers and runtimes is a presentation 
in itself!
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OpenMP: Clang release-10.x
Ver. 0 Ver. 1 Ver. 2 Ver. 3

Clang release-10.x results
Version 0: Nominal version (see OpenMP issue slide)
Version 1: Manually distribute sites across teams
Version 2: Work item version (see OpenMP issue slide)
Version 3: Uses collapse(4) over outer loop



Summary and conclusions

• Su3_bench is an open benchmark developed to explore exascale era languages, 
compilers and runtimes
• https://gitlab.com/NERSC/nersc-proxies/su3_bench

• Roofline analysis shows that the benchmark is memory bound, however it is 
more than just another STREAM benchmark
• A non-trivial complex matrix-matrix multiply kernel with multiple loop nests
• Initial analysis discovered serious compiler issues that significantly limited performance
• Even after workarounds and optimizations, performance varies up to 30% across the different 

programming environments
• Analysis has been performed across NVIDIA, AMD and Intel GPUs

• Performance portability is good across architectures
• All languages can target the NVIDIA GPU, not a surprising conclusion given its longevity in the 

market
• There has been extensive use of su3_bench in evaluating OpenMP compilers and 

runtimes, results of which are beyond the time allowed by this venue
• However, if you’re interested we’d be happy to work with you
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https://gitlab.com/NERSC/nersc-proxies/su3_bench


Future Work

• Need to incorporate more realistic memory access patterns
• Although the SU(3) multiplications represent LQCD codes, the lattice site 

access patterns of su3_bench do not
• Higher level Dslash stencil operation proxy-application is desirable

• Need to incorporate Lattice QCD methods that allow effective use of 
SIMD for CPU targets?
• Typically incorporates a data reordering technique to allow adjacent sites to 

have better spatial locality and hence better utilization of long SIMD lengths
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